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Abstract 

We present some inequalities for the Taylor coefficients of a Hardy-Orlicz 
function, which in the case of the standard Hardy spaces reduce to the 
inequalities of Hardy and Littlewood. The proofs are new and elementary even 
in the case of the classical Hardy spaces. We also prove a Marcinkiewicz type 
theorem that extends a theorem of Kislyakov and Xu. At the end, we prove a 
Hardy-Prawitz criterion for membership of a univalent function in a          
Hardy-Orlicz space. 

1. Notation and Basic Facts 

By the term “Orlicz function”, we mean a continuous function 
[ ) [ )∞∞Φ ,0,0:  such that ( ) 00 =Φ  and 

( )
α

Φ

t
t  increases in ( ),,0 ∞∈t  for some .0>α   (1) 
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We shall also consider the following possible condition, called :condition-2∆  

( )
( ) ,2sup ∞<

Φ
Φ

> t
t

at
 for some constant .0≥a   (2) 

This condition is implied by 

( )
β

Φ

t
t  decreases in ( ),,0 ∞∈t  for some .0>β   (3) 

If Φ  satisfies both (1) and (3), then we write [ ]., βα∆∈Φ  We write 

( ),, βα∆∈Φ  if [ ]δγ∆∈Φ ,  for some .β<δ<γ<α  

Let µ  be a positive finite measure defined “on a set S”. If Φ  is an 

Orlicz function, then the (Orlicz) space ( )µΦL  consists, by definition, of 

those complex valued functions 1 f such that 

( ) ( ) ,∞<µ







λ
Φ∫ sdsf

S
 for some .0>λ   (4) 

The subspace of ΦL  defined by the requirement “for all 0>λ ” is 

denoted by ( ).µΦE  The Luxemburg (quasi) norm on ΦL  is defined to be 

the infimum of those λ  for which (4) holds. The spaces ΦL  and ΦE  are 

complete (see, e.g., [7, page 36], or [4]). 

If the measure µ  is finite and there are positive constants jc  and 

,jC  and ,0>a  such that 

( ) ( ) ( ) ,,2121 attCCttcc ≥Ψ≤Φ≤Ψ  (5) 

where Φ  and Ψ  are Orlicz function, then ,, ΨΦΨΦ == EELL  with 

equivalent norms. We write ( ) ( ) ,,~ attt ≥ΦΨ  if (5) holds. 

                                                      
1We always assume that functions under consideration are measurable. 
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Lemma 1.1. If Φ  is an Orlicz function satisfying (1), then there is an 
Orlicz function Ψ  such that 

(i) ( ) ( ) ;0,~ ≥ΦΨ ttt  

(ii) the function ( ) 0,1 ≥Ψ α tt  is convex. 

Proof. The desired conditions are satisfied by the function 

( ) ( ) .0,
1

0
≥

Φ
=Ψ

α

∫
α

tdxx
xt

t
 

Indeed, if (1) holds, then ( )
x
x αΦ 1

 increases with x and so 

( ) ( ) ( ) .0,1
1

0
1 >Φ=

Φ
≤Ψ α

α
α ∫ ttdtt

tt
t

 

On the other hand, since Φ  is increasing, we have 

( ) (( ) ) (( ) ),1
1

1 α
α

α Φ=
Φ

≥Ψ ∫ etdxx
ett

t

et
 

and hence ( ) ( ) ,1 αΦ≥Ψ ett  which completes the proof.   

Remark 1.2. We can consider a condition weaker than (1), namely: 

( )
α

Φ

t
t  almost increases in ( ),,0 ∞∈t  for some .0>α   (6) 

According to Bernstein [1], a real function ϕ  is said to be almost 
increasing if the implication ( ) ( )”yCxyx ϕ≤ϕ⇒<“  holds, where C is a 
positive constant independent of x and y. If Φ  satisfies (6), then the 
function 

( ) ( ) ,inf
α≥

α Φ
=Ψ

t
ttt

tx
  (7) 

satisfies (1) (with Ψ  instead of Φ ), and 

( ) ( ) ( ) .0,1 ≥Φ≤Ψ≤Φ ttttC   
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Hardy-Orlicz spaces. If ,T=S  the unit circle, and µ  is the Haar 

measure on ,T  then we write ( ) ( )TΦΦ =µ LL  and ( ) ( ).TΦΦ =µ EE  The 

Hardy-Orlicz spaces ( )TΦH  and ( )TΦEH  can be defined in various ways. 

For instance, let 

( ) ( )( ) ,sup
10

ζζΦ= ∫<<
Φ drffI

r T
 

and define ΦH  [resp., ΦEH ] by the requirement that ( ) ∞<λΦ fI  for 

some [resp., for all] .0>λ  

From now on, we assume that Φ  satisfies condition-2∆  so that 

.ΦΦ = EHH  

In view of Lemma 1.1, we may assume (up to equivalent quantities) 

that ( )αΦ 1t  is convex, which implies that ( )fΦ  is subharmonic and 

hence that 10sup <<r  can be replaced with .lim 1↑r  The boundary function 

( ) ( )ζ=ζ ↑∗ rff r 1lim  exists because ,α
Φ ⊂ HH  where αH  denotes the 

standard Hardy-α  space, and moreover, we have 

( ) ( ( ) ) .ζζΦ= ∗Φ ∫ dffI
T

 

For the theory of Hardy-Orlicz spaces, we refer to [12, Chapter 10] and [5]. 

2. Taylor Coefficients of Hardy-Orlicz Functions 

In the case where ( ) ,20, <<=Φ ptt p  the following result reduces 

to the famous theorem of Hardy and Littlewood: 

Theorem 2.1 ([8]). If Φ  is an Orlicz function such that ( ) 2ttΦ  is 

decreasing in ,0>t  and ( ) n
nzazf ∑=  belongs to ,ΦH  then 

( ) ( ).2
1

fCI
n

an n

n
Φ

∞

=

≤
Φ∑   (8) 
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Proof. Let 

( ) ( )( )
( )

( ) ( ),, 2
2 zdAzf

zf
zffrrE

r
′

Φ
= ∫Φ

D
 

where dA is the Lebesgue measure in the plane, ( ) 0≠zf  for some ,D∈z  
and ( ) .00 =f  Consider the function 

( ) ( ) ( ) .
1

0

1

000
dxdssx

tsx
s

dsdxx
xtN

st Φ
=







 Φ
= ∫∫∫∫   (9) 

This function is of class 2C  on ( ),,0 ∞  and therefore, the Hardy-Stein 
identity 

( ) ( ) ( )( ) ,,2 2dAfffNfNfrIdr
dr

r
N ′′+′′=π ∫ D

  (10) 

holds (see [11]), provided that ( ) 0≠zf  for .rz =  Simplifying the 
expression under the integral, we conclude that 

( ) ( ),,,2 frEfrIdr
d

N Φ=π   (11) 

under the above condition. Since the function ( )frI ,Φ  is convex of log r 
and continuous on [ ),1,0  we see that it is absolutely continuous on [ ),1,0  

which together with the inequality ( ) ( ) ( ) ( )24 αΦ≤≤Φ ttNt  (valid 

because ( ) ( ) ( ) ( ) ( )tsxsxttsx Φ≤Φ≤Φ α2 ) implies 

( ) ( ) ( ),,
1

0
1 fKIdrfrEfIK ΦΦΦ
− ≤≤ ∫   (12) 

where K is a constant depending only on .α  Let 

● ( ) ( );ttQ Φ=  

● ( ) ( ) ;2
1

n
nn

rar ∑∞

=
=ω  

● ( ) .1 2122

1
dAfrranr

r
n

n
n

′
π

==σ ∫∑ −
∞

= D
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Since ( ) ( ) ( )rzrzf <ω≤  and the function ( ) ttQ  is decreasing, we 

have 

( ) ( )( )
( )

( )( )
( ) ( )., 2 rr

rQrdAfr
rQfrrE

r
σ

ω
ω

π=′
ω
ω

≥ ∫Φ
D

  (13) 

It follows that 

( ) ( )( )
( ) ( ) .

1

0
drrr

rQfKI σ
ω
ω

≥ ∫Φ   (14) 

On the other hand, 

( ) ( ) ( ) ,0,0, >>−≥ yxxQyQyx
xQ   (15) 

because the function ( ) ttQ  is decreasing. The last two inequalities 

imply 

( ) ( )( ) ( ( )[ ] ,1 1

0
drrQrCQCfKI ω−σ≥ ∫Φ   (16) 

where 1>C  is a constant which will be chosen later on. In order to 
continue the proof, we need two consequences of [6]: 

( )( ) ,22 2

0
1

1

0 












≥σ ∑∑∫

∈

−
∞

=
k

k
aQKdrrQ

nI

nn

n
 (17) 

( )( ) ,2
2

0
2

1

0 




























≤ω ∑∑∑∫

∈∈

−
∞

=
k

kk
aQKdrrQ

nn II

n

n
 (18) 

where { },22: 1+<≤= nn
nI kk  and 21, KK  are positive constants 

depending only on .α  Using this and the inequality 

,2 2
2

k
k

k
k

aa
nn I

n

I
∑∑
∈∈

≤
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we get 

( )( ) ( )( ) ( )( ) ,2
1 1

0

1

0
3

1

0
drrCQrQKdrrQ σ≤σ≤ω ∫∫∫  

where C is chosen so that .2 3
2 KC ≥α  From this and (16) we infer 

( ) ( )( ) .22 22

0

1

0 












σ≥ ∑∑∫

∈

−−
∞

=
Φ k

k

k aQdrrQrKI
nI

nn

n
   (19) 

Since ( ) ttQ  is decreasing, there is a concave function ,1 QQ   so we may 

assume that Q is concave. Then we have 

( ) ( ),222 2222
k

k
k

k
k

k

kkk aaQaQ
nnn I

n

I

n

I

n Φ=≥












∑∑∑
∈

−

∈

−

∈

−  

which along with (19) concludes the proof.   

Remark 2.2. Inequality (19) can be rewritten as 

( ) .22
21

22

0 




























Φ≥ ∑∑

∈

−
∞

=
Φ k

k
afKI

nI

nn

n
  (20) 

Theorem 2.3. Let [ ]β∆∈Φ ,2  for some .2≥β  Then 

( ) ( ) .2
1 n

anKfI n

n

Φ
≤ ∑

∞

=
Φ   (21) 

Proof. With the notation of the proof of Theorem 2.1, we have 

( ) ( ) ( ).xyyx
xQ

Φ+Φ≤  

Then proceed in a similar way as in the case of Theorem 2.1.   
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Theorem 2.4. Let ( )qp,∆∈Φ  for some .0 ∞<<< qp  Then 

( ) ( )( ) ( ).,1 11

0
fKIdrfrMr q

q
Φ

− ≤−Φ∫   (22) 

For the proof, we need a consequence of [9, Theorem 1.1]. 

Lemma 2.5. Let ( ) ,0,10,, ≥≤≤ yxyxF  be a nonnegative function 

such that 

( ) ( ),,, yxFyxF ab ρη µλ≤µλµλ   (23) 

where ρη,,, ba  are positive constants independent of [ ]1,0∈x  and 

[ ).,0 ∞∈y  If ( ) ,10,1 <≤= ∑∞
=

rrcrh n
nn  and 0≥nc  for all n, then 

[ ( )] ( ) .,21,1
0

11

0 












−− ∑∑∫

∈

−
∞

=

−
k

k
cFdrrrhrF

nI

n

n
   (24) 

Proof of Theorem 2.4. Using Blaschke products in the standard 
way, we reduce the proof to the case .2=q  Then [ ]βα∆∈Φ ,  for some 

.2<β  So we have to prove 

( ) ( )( ) ( ).,1 2
211

0
fKIdrfrMrI Φ

− ≤−Φ= ∫   (25) 

The function 

( ) ( ) ,, 21 xyxyxF −Φ=   (26) 

satisfies (23) with .2,2,021,021 β=ηα=ρ>α−=>β−= aa  

Hence, by Lemma 2.5, 
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( ) ( ) drrrarFI n
n

n

122

1

211

0
1,1 −

∞

=

− −












−= ∑∫  














∑∑
∈

∞

=

22

0
,2 k
k

aF
nI

n

n
  

 .22
21

22

0 




























Φ= ∑∑

∈

−
∞

=
k

k
a

nI

nn

n
 

Now the desired result follows from (20).   

As a consequence, we have: 

Theorem 2.6. If ( ),1,α∆∈Φ  then 

( ) ( ),sup
1

2

1
k

k
k anfKI

nn
Φ≥

≤≤

−
∞

=
Φ ∑   (27) 

and consequently, 

( ) ( ) ., ∞→=Φ nnoan n   (28) 

Proof. This can be deduced from the case 1=q  of Theorem 2.4 and 
the inequality 

( ) .10,sup,
0

1 <<≥
≥

rrafrM n
n

n
 

 

3. Kislyakov-Xu Interpolation Theorem 

An operator T acting from ΦH  to the class of nonnegative 

measurable functions on a set is said to be quasilinear if ( ) KgfT ≤+  

( ),gf +  where K is a positive constant. In the case, where ( ) ,stt =Φ  

,qsp <<  the following theorem was proved by Kislyakov and Xu [3]. 
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Theorem 3.1. Let ,∞<< qp  and let T be an operator defined on 
pH  with values in the class of measurable-µ  functions, where µ  is a 

positive measure. Let T be of weak types ( )pp,  and ( ),, qq  i.e., that there 

exist constants 1C  and ,2C  independent of f, such that 

( ) { } ,,::, 1 pp
p HffCff ∈

λ
≤λ>∈ζ=λµ ∗T  (29) 

{ } ,,: 2 qq
q HffCf ∈

λ
≤λ>∈ζ ∗T  (30) 

and ( ),, qp∆∈Φ  then T acts a bounded operator from ΦH  into ( ).µΦL  

Here S  denotes the arc-length measure of .T⊂S  

Proof. We have the decomposition ,λλ += hgf  where pHg ∈λ  and 
∞

λ ∈ Hh  are analytic, and 

,dlfAg p
f

p
p ∫ λ>

λ ≤  

,2 dlfAdlfAh q
f

qq
f

q
q

−

λ>λ≤
λ ∫∫ λ+≤  

where A = const.. This is a consequence of a result of Bourgain [2]; see  
[10, Lemma 4.1]. Assuming that ( ) TgfTgfT +≤+  and ,121 == CC  

we have 

( ) ( ) ( )2,2,, λµ+λµ≤λµ λλ ThTgfT  

  ( ) ( ) dlfAdlfA q
f

qp
f

p ∫∫ λ≤λ>
λ+λ≤ 22  

( ) ( ) ( ) ( ).2 321 λ+λ+λ=λ+ −

λ>∫ IIIdlfA q
f

q  

Now, we use the formula 

( ) { } ( ),:2
0

λΦλ>∈ζ=π ∗
∞

Φ ∫ dffI T   (31) 
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to get 

( ) [ ( ) ( ) ( )] .2 321
0

λλ+λ+λ≤π ∫
∞

Φ dIIIfTI  

We have 

( ) ( )λΦλ≤λλ −
∞

∫∫∫ ddfAdI pfpp
0

1
0

2
T

 

 ( ) ( ) .2 1
0

ddpfffA pfppp








λλλΦ+Φ= −−− ∫∫T  

On the other hand, the hypothesis ( )qp,∆∈Φ  implies that ( ) αΦ tt  

increases in t for some ,p>α  which gives 

( ) ( ) .1
0

ppf
ffCd −−− Φ≤λλλΦ∫  

Hence, 

( ) ( ).1
0

fCIdI Φ
∞

≤λλ∫  

This implies part of the desired result. The rest is proved similarly.   

Theorem 3.2 (Hardy). If Φ  is an Orlicz function satisfying 
,-2 condition∆  then 

( ( )) ( ) .,,
1

0
ΦΦ∞ ∈≤Φ∫ HffCIdrfrM   (32) 

Proof. This is obtained from the “p-case” of the Hardy theorem by 

means of the interpolation theorem.   

Theorem 3.3 (Prawitz). If f is univalent in D  and Φ  as above, then 

( ) ( ( )) .,
1

0
drfrMCfI ∞Φ Φ≤ ∫   (33) 
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Proof. Let 

( ) ( ) ( ).
0

tdxx
xt

t
φ

Φ
=Ψ ∫  2  (34) 

We have 

( ) ( )( ) ( ) ζζζΨ′=π ∫Ψ drfdr
drffrIdr

d
T

,2  

( )( )
( )

( ) ( )
( ) ζ
ζ

ζζ′ζ
ζ
ζΦ

= ∫ drf
rfrf

rf
rf

ℜ
T

 

( )( )
( )

( ) ( )ζζ
ζ

ζΦ
= ∫ =ζ

dff
f

f
r r 2
1 ℑ  

( ) ,1
2 dww

w
w

r r

Φ
= ∫Γℑ  

where rΓ  is the image of the circle r=ζ  under f; the curve rΓ  is 

oriented positively. Let ( ) ,max,, zfR rzRr =>Ω  be the domain bounded 

by rΓ  and the circle .Rz =  Applying the Green’s formula 

( ) ( ),2 ivuwdvduw
FidwwF +=
∂
∂= ∫∫ ΩΩ∂

  (35) 

to the case, where Rr,Ω=Ω  and ( ) ( ) ,2 z
z

zzF Φ
=  we get 

( ) dww
w

w
r

2
Φ

∫Γ  

( ) ( ( ) ( ( ) ) ( ( ) .
22

2 2322 dvdu
w

wf
w

wf
w

wfidww
w

w
Rw 









 Φ
−

Φ′
+

Φ
−

Φ
= ∫∫ Ω=

 

 

                                                      
2We write BA   if there is a constant C such that .CAACB ≤≤  
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Hence 

( ) ( ) dww
w

wdww
w

w
Rwr

22
Φ

=
Φ

∫∫ =Γ
ℑℑ  

( ( ) ( ( ) ) dvdu
w

wf
w

wf









 Φ′
+

Φ
− ∫Ω 32  

( ) ( ).2 Rdww
w

w
Rw

Φ=
Φ

≤ ∫ =
ℑ  

If ( ) ,00 =f  then from the preceding relations it is easy to deduce that 

( ) ( ) ( ( )) .,
1

0
drfrMCfCIfI ∞ΨΦ Φ≤≤ ∫  

Otherwise, we apply this inequality to the function ( )0ff −  to complete 

the proof. 

 

Combining the last two theorems, we obtain the following 
generalization of the Hardy-Prawitz theorem: 

Theorem 3.4. A function f univalent in D  belongs to ,pH  if and only if 

( ( )) .,
1

0
∞<Φ ∞∫ drfrM  
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