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Abstract

We present some inequalities for the Taylor coefficients of a Hardy-Orlicz
function, which in the case of the standard Hardy spaces reduce to the
inequalities of Hardy and Littlewood. The proofs are new and elementary even
in the case of the classical Hardy spaces. We also prove a Marcinkiewicz type
theorem that extends a theorem of Kislyakov and Xu. At the end, we prove a
Hardy-Prawitz criterion for membership of a wunivalent function in a
Hardy-Orlicz space.

1. Notation and Basic Facts

By the term “Orlicz function”, we mean a continuous function
® : [0, ©) > [0, ©) such that ®(0) = 0 and

D(t)
e
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increases in ¢ € (0, «), for some o > 0. (1)

linear operators.
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We shall also consider the following possible condition, called Aq-condition:

@ (2t)

sup

——% < oo, for some constant a > 0. 2)
t>a (I)(t)

This condition is implied by

_d)ét) decreases in ¢ € (0, ), for some B > 0. ®)
t

If ® satisfies both (1) and (3), then we write ® e Ala, B]. We write
® e Ao, B), if ® € Aly, 8] for some o <y < § < B.

Let p be a positive finite measure defined “on a set S”. If ® is an
Orlicz function, then the (Orlicz) space Lg (1) consists, by definition, of

those complex valued functions! f such that

J‘SQ(@}JZH(S) < oo, for some A > 0. 4)

The subspace of Lg defined by the requirement “for all A > 0” is
denoted by Eg(u). The Luxemburg (quasi) norm on Lg, is defined to be
the infimum of those A for which (4) holds. The spaces Lq and Eg are

complete (see, e.g., [7, page 36], or [4]).

If the measure p is finite and there are positive constants c¢; and
C]- and a > 0, such that
c;W(cat) < @) < C1¥(Cot), t > a, (5)

where ® and ¥ are Orlicz function, then Ly = Ly, Eq = Ey, with

equivalent norms. We write ¥(¢) ~ ®(¢), t > a, if (5) holds.

1We always assume that functions under consideration are measurable.
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Lemma 1.1. If ® is an Orlicz function satisfying (1), then there is an
Orlicz function ¥ such that

() PE) ~ @), t>0;
(i1) the function \I‘(tl/a ), t > 0 is convex.

Proof. The desired conditions are satisfied by the function

(x¥)

Indeed, if (1) holds, then (DXT increases with x and so

1/
w(/e) < I;%dt o), t>o.

On the other hand, since @ is increasing, we have

‘I’(tl/a) > J.t q)((t/e)l/a)dx _ @((t/e)l/a)’

t/e X
and hence ¥(t) > ®(¢/ et ), which completes the proof. O

Remark 1.2. We can consider a condition weaker than (1), namely:

@)

—— almost increases in ¢ € (0, o), for some a > 0. (6)
t

According to Bernstein [1], a real function ¢ 1is said to be almost
increasing if the implication “x < y = ¢(x) < Co(y)” holds, where C is a

positive constant independent of x and y. If ® satisfies (6), then the
function

Y(t) = t* infq)—(t), (7)

x2t &

satisfies (1) (with ¥ instead of @), and

1
6@(t)£‘1’(t)sd>(t), t>0. O
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Hardy-Orlicz spaces. If S = T, the unit circle, and p is the Haar
measure on T, then we write Lg(n) = Lg(T) and Eg(n) = E¢(T). The
Hardy-Orlicz spaces Hg(T) and EHg(T) can be defined in various ways.

For instance, let

Io(f) = suw [ o(fee))ad,

O<r<1

and define Hg [resp., EHg ] by the requirement that Iq(|f|/ %) < oo for

some [resp., for all] A > 0.
From now on, we assume that ® satisfies Ag-condition so that

Hg = EHyg,.

In view of Lemma 1.1, we may assume (up to equivalent quantities)
that ®(t/) is convex, which implies that ®(|f|]) is subharmonic and

hence that supg.,.; can be replaced with lim 4, . The boundary function

fe(€) = lim 4, f(r() exists because Hq, < H*, where H® denotes the

standard a-Hardy space, and moreover, we have
Io(f) = (£l

For the theory of Hardy-Orlicz spaces, we refer to [12, Chapter 10] and [5].

2. Taylor Coefficients of Hardy-Orlicz Functions
In the case where ®(t) = t?, 0 < p < 2, the following result reduces
to the famous theorem of Hardy and Littlewood:

Theorem 2.1 ([8]). If ® is an Orlicz function such that ®(t)/t> is

decreasing in t > 0, and f(z) = Y a,z" belongsto Hg, then

Zw < Cly (/). ®)

n=1



HARDY-ORLICZ SPACES: TAYLOR COEFFICIENTS ... 5
Proof. Let

@ (|f(z))

SITE A

rEq(r, f) =I

where dA is the Lebesgue measure in the plane, f(z) # 0 for some z € D,

and f(0) = 0. Consider the function

N(t) = L:UOS dej% _ J;I;%dsdx. ©)

X

This function is of class C? on (0, ©), and therefore, the Hardy-Stein
identity

2nr - In(r f) = | N+ NUA DI, (10)

holds (see [11]), provided that |f(z)] = O for |z| = r. Simplifying the

expression under the integral, we conclude that
d
ZWEIN(’% f):Eq)(l", f)> (11)

under the above condition. Since the function I4(r, f) is convex of log r

and continuous on [0, 1), we see that it is absolutely continuous on [0, 1),
which together with the inequality ®(¢)/4 < N(t) < ®(t)/(a?) (valid

because (sx)?®(t) < @ (sxt) < (sx)*®(¢)) implies

1
K Io(f) < [ Eo(r, f)dr < Klo(f). (12

where K is a constant depending only on a. Let
* Q(t) = ®(1);
_ ® n\2.
e o(r)= (Y lanr"):

L1 ,
e o(r) = Zn|an|2r2n L _ Fjrm|f|2dA.

n=1
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Since |f(z)| < o(r)(|]z] < r) and the function Q(t)/¢ is decreasing, we

have

QI [ gy o Q)
rEq(r, f) > o(r) J.r]D)lfl dA =m o(r) (r). (13)

It follows that

Klg(f) > ' Qo) o(r) dr. (14)
0 (r)

On the other hand,
@y > Q()-Qkx), x>0,y>0, (15)

because the function Q(¢)/t is decreasing. The last two inequalities

imply
Ko () > & [ [QColr) - @orlar 16)

where C >1 1is a constant which will be chosen later on. In order to

continue the proof, we need two consequences of [6]:

j Qo(r))dr > Klzz "Q{T’ D el J )

kel,

j Qo (r))dr < K2Z2 ">.Q {Z Iali ; (18)

n=0 kel kel

where I, = {k:2" <k <2"1) and K;, K, are positive constants

depending only on o. Using this and the inequality

2
[Z |ak.|J <2 Y
kel kel,
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we get
1 1 1 1
[, Qomar < K3 [ @tol) < 5 [ @(Colrar.

where C is chosen so that C*/2 > 2K 3. From this and (16) we infer

Klg(r) 2 f ;Q(G(r))drxz 2”Q[2” > k2|ak,|2]. (19)
n=0

kel,

Since Q(t)/t is decreasing, there is a concave function @;=Q, so we may

assume that @ is concave. Then we have

Q(Q_n Z kzlaklz] > 9" Z Q(k2|ak|2) — 9 Z q)(klakl),

kel kel kel,
which along with (19) concludes the proof. |

Remark 2.2. Inequality (19) can be rewritten as

" 1/2
Kig(f) = Zz—"cp 2n/2[ Z |ak|2] . (20)
n=0

kely,

Theorem 2.3. Let ® € A[2, B] for some B > 2. Then

Io(f) < sz. @1)
n=1

Proof. With the notation of the proof of Theorem 2.1, we have

Q(x)

— )< D(y) + ().

Then proceed in a similar way as in the case of Theorem 2.1. O
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Theorem 2.4. Let ® € A(p, q) for some 0 < p < q < . Then

qu>((1 — MM, f))dr < Kl (f). 22)
0

For the proof, we need a consequence of [9, Theorem 1.1].

Lemma 2.5. Let F(x, y),0<x <1, y >0, be a nonnegative function

such that
2N Fx, wy) < AP F(x, p), 23)
where a, b, n, p are positive constants independent of x € [0,1] and
y € [0, o). If h(r) = Z:zlcnr”, 0<r<1,and ¢, =0 foralln, then
1 o0
Fll-r, h()]Q-r)"tdr=Y F| 27", L |- (24)
IO r;) k;l

Proof of Theorem 2.4. Using Blaschke products in the standard

way, we reduce the proof to the case ¢ = 2. Then ® e Ala, B] for some

B < 2. So we have to prove

I- J' Olqn((1 — M2 My, f))dr < Ko (f). 25)

The function

F(x, y) = o(x 2y, (26)

satisfies (23) with a =1-B/2>0,a=1-0a/2>0,p=a/2,n=H/2.

Hence, by Lemma 2.5,
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I= J:F[(l - r)_l/z, 2|an|2r2n] 1-r)tar
:ip(znﬂ, Z|ak|2]

. 1/2
=Y 2" 2"/2[ >, |ak|2] :
n=0

kel

Now the desired result follows from (20).

Asa consequence, we have:

Theorem 2.6. If ® € A(a, 1), then

KIo(f)> Y n® sup @ (kay|),
el 1<k<n

and consequently,

®(nla,|) = o(n), n — oo

@7

(28)

Proof. This can be deduced from the case ¢ =1 of Theorem 2.4 and

the inequality

M(r, ) = Sup|an|rn, 0<r<l.
n>0

3. Kislyakov-Xu Interpolation Theorem

An operator T acting from Hg to the class of nonnegative

measurable functions on a set is said to be quasilinear if T(f + g) < K

(|7] +|g]), where K is a positive constant. In the case, where ®(¢) = t°,

p < 8 < q, the following theorem was proved by Kislyakov and Xu [3].
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Theorem 3.1. Let p < q < o, and let T be an operator defined on

HP with values in the class of n-measurable functions, where p is a
positive measure. Let T be of weak types (p, p) and (q, q), i.e., that there

exist constants C; and Cy, independent of f, such that
Ci ypp p
W(f, 1) = e TR < SHAR, f e B, (29)

e eTHIAl> M < I fe B, (30

and ® € A(p, q), then T acts a bounded operator from Hg, into Lg(n).

Here |S| denotes the arc-length measure of S = T.

Proof. We have the decomposition f = g, + h;, where g; € H” and

h, € H” are analytic, and

P oA j ¥
lesly < 4] 1

B < Aj' qu+Ax2qJ X
g < af I U

where A = const.. This is a consequence of a result of Bourgain [2]; see
[10, Lemma 4.1]. Assuming that T(f + g) < Tf +Tg and C; = Cy =1,

we have

M(Tf9 7\') < “(Tgk’ }”/2)4' “(Th?w 7\‘/2)
<@/ | Pl A/ | b
+ AL j ‘f‘>x|f|_qdl = 100 + I (0) + ().

Now, we use the formula

2nlo(f) = [ lC < T 1] > 1do ), 31
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to get
ol (Tf) < j :[Il(k) 1,00 + Is(V)]d
We have

j "L < Azpj IfPdr j N pan ()
0 T 0

= A2P I T|f|p(cb(|f|)|f|_p +p I Ofcp(x)xpldxjdz.

On the other hand, the hypothesis ® e A(p, ¢) implies that ®(¢)/t*

increases in ¢ for some o > p, which gives
If] I “p
[, o0nran < coqir.
Hence,

I szl(x)dx < CIo(f).

This implies part of the desired result. The rest is proved similarly. O

Theorem 3.2 (Hardy). If ® 1is an Orlicz function satisfying

Aq-condition, then

1
[ @O Pdr < Clo(f). f < Ho. (32)

Proof. This is obtained from the “p-case” of the Hardy theorem by

means of the interpolation theorem. a

Theorem 3.3 (Prawitz). If f is univalent in D and ® as above, then

Talf) < Cf @ (M..(r, 39)
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Proof. Let
t
w(t) - L)@ dx =0 (t). 2 (34)
We have

2 1y, £) = [ PO Il

1 (L) gy FOOF 0L

[F(ro)| [F(r)|

1 @ (/D 77
-1g FQ)d
S e o Qe

1y Oy,
w

where T, is the image of the circle || =r under f; the curve T, is

oriented positively. Let Q. p, R > maxp,_,|f(z)|, be the domain bounded

by I, and the circle |z| = R. Applying the Green’s formula

I F(w)dw = 2iJ‘ idudv (w = u +iv), (35)
0Q Q0w

() _
to the case, where Q = Q, p and F(z) = %z, we get
z

jr dew

r

5 @) g5 - 2 [d>(|f(w)|+<1>’(|f(w)l) (|fw)| ),
Q

R fof? WP 2P 2

2We write A = B if there is a constant C such that B/ C < A < CA.
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Hence

sj —cD(lL;)l)wdw:SI —(D(llgl)wdw
S W-R o]

- [CD(If(w)I . d)'(lf(w)l)] s
Q

eof? eof?

IN

o)
Jjw:R e dw = ®(R).

If £(0) = 0, then from the preceding relations it is easy to deduce that

Ia(f) < Cly(f) < Cf @ (M. (¢, f))ar.

Otherwise, we apply this inequality to the function f — f(0) to complete

the proof.

O

Combining the last two theorems, we obtain the following

generalization of the Hardy-Prawitz theorem:

Theorem 3.4. A function f univalent in D belongs to H ,, if and only if

p’

j;@(Mw(r, ))dr < .
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